Nitrate and Inhibition of Ruminal Methanogenesis: Microbial Ecology, Obstacles, and Opportunities for Lowering Methane Emissions from Ruminant Livestock
نویسندگان
چکیده
Ruminal methane production is among the main targets for greenhouse gas (GHG) mitigation for the animal agriculture industry. Many compounds have been evaluated for their efficacy to suppress enteric methane production by ruminal microorganisms. Of these, nitrate as an alternative hydrogen sink has been among the most promising, but it suffers from variability in efficacy for reasons that are not understood. The accumulation of nitrite, which is poisonous when absorbed into the animal's circulation, is also variable and poorly understood. This review identifies large gaps in our knowledge of rumen microbial ecology that handicap the further development and safety of nitrate as a dietary additive. Three main bacterial species have been associated historically with ruminal nitrate reduction, namely Wolinella succinogenes, Veillonella parvula, and Selenomonas ruminantium, but others almost certainly exist in the largely uncultivated ruminal microbiota. Indications are strong that ciliate protozoa can reduce nitrate, but the significance of their role relative to bacteria is not known. The metabolic fate of the reduced nitrate has not been studied in detail. It is important to be sure that nitrate metabolism and efforts to enhance rates of nitrite reduction do not lead to the evolution of the much more potent GHG, nitrous oxide. The relative importance of direct inhibition of archaeal methanogenic enzymes by nitrite or the efficiency of capture of hydrogen by nitrate reduction in lowering methane production is also not known, nor are nitrite effects on other members of the microbiota. How effective would combining mitigation methods be, based on our understanding of the effects of nitrate and nitrite on the microbiome? Answering these fundamental microbiological questions is essential in assessing the potential of dietary nitrate to limit methane emissions from ruminant livestock.
منابع مشابه
Strategies to Reduce Methane Production in Ruminants
Ruminant animals play an important role in the food chain for evaluate cellulose and non-protein nitrogenous (NPN) compounds absorbed partially or not by other farm animals and humans. However, ruminant animals also bring some disadvantages. Methane, produced as a natural consequence of the ruminal digestion and it is a potential green house gas, is a problem, both ecologically and economically...
متن کاملInsights on Alterations to the Rumen Ecosystem by Nitrate and Nitrocompounds
Nitrate and certain short chain nitrocompounds and nitro-oxy compounds are being investigated as dietary supplements to reduce economic and environmental costs associated with ruminal methane emissions. Thermodynamically, nitrate is a preferred electron acceptor in the rumen that consumes electrons at the expense of methanogenesis during dissimilatory reduction to an intermediate, nitrite, whic...
متن کاملThe complete genome sequence of the methanogenic archaeon ISO4-H5 provides insights into the methylotrophic lifestyle of a ruminal representative of the Methanomassiliicoccales
Methane emissions from agriculture represent around 9 % of global anthropogenic greenhouse emissions. The single largest source of this methane is animal enteric fermentation, predominantly from ruminant livestock where it is produced mainly in their fermentative forestomach (or reticulo-rumen) by a group of archaea known as methanogens. In order to reduce methane emissions from ruminants, it i...
متن کاملRuminal Fermentation of Anti-Methanogenic Nitrate- and Nitro-Containing Forages In Vitro
Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if consumed in high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied little in this regard. Presently, we found that nitrate-, NPA-, or NPOH-containing forages effec...
متن کاملGenome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies.
Ruminant-derived methane (CH4), a potent greenhouse gas, is a consequence of microbial fermentation in the digestive tract of livestock. Development of mitigation strategies to reduce CH4 emissions from farmed animals is currently the subject of both scientific and environmental interest. Methanogens are the sole producers of ruminant CH4, and therefore CH4 abatement strategies can either targe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Frontiers in microbiology
دوره 7 شماره
صفحات -
تاریخ انتشار 2016